Для чего служит гидротрансформатор на коробке автомат

Гидротрансформатор АКПП, принцип работы, неисправности

Для чего служит гидротрансформатор на коробке автомат

Сейчас большая часть автомобилей выпускается с автоматическими коробками передач или же вариаторами, поскольку эти типы трансмиссии отличаются удобством пользования по сравнению с механической коробкой.

Какую роль играет гидротрансформатор

Чтобы обеспечить плавность переключения передач и обеспечения беспрерывной передачи крутящего момента (для вариатора) используется совсем иной вид сцепления.

В автомобилях с вариатором и АКПП в качестве сцепления – элемента, передающего крутящий момент от силовой установки на коробку передач, выступает гидротрансформатор.

Особенность этого элемента, входящего в конструкцию трансмиссии, заключается в том, что передача усилия происходит посредством жидкости, то есть, жесткой связи между мотором и КПП нет (хотя это не совсем так).

Гидротрансформатор позволяет осуществить бесступенчатую передачу усилия, причем с возможностью изменения крутящего момента и скорости вращения.

Также в момент изменения ступени (в АКПП) гидротрансформатор позволяет разъединить между собой мотор и трансмиссию, а после плавно возобновить передачу усилия.

По сути устройство выполняет роль сцепления, но с некоторыми дополнительными функциями.

Устройство, принцип работы, режимы

Конструкция гидротрансформатора включает в себя всего несколько элементов:

  • Насосное колесо;
  • Турбинное колесо;
  • Статор, он же – реактор;
  • Корпус;
  • Механизм блокировки;

Монтируется гидротрансформатор на маховике двигателя, но одна из составляющих его имеет жесткую связь с валом коробки передач.

Если провести аналогию этого типа передачи с обычным сцеплением фрикционного типа, то насосное колесо выполняет роль ведущего диска (жестко соединено с коленчатым валом мотора), а турбинное – ведомого (прикрепленного к валу КПП). Вот только физического контакта между этими колесами нет.

Примечательно, что даже расположение этих колес идентично фрикционному сцеплению – турбинное колесо располагается между маховиком и насосным колесом.

Все составные части гидротрансформатора заключены в герметичный корпус, заполненный специальной рабочей жидкостью — маслом ATF. За счет своей формы этот элемент трансмиссии получил народное название «бублик».

Суть работы гидротрансформатора очень проста. На колесах устройства имеются лопасти, которые перенаправляют жидкость в определенном направлении.

Вращаясь вместе с маховиком, насосное колесо создает поток жидкости и направляет его на лопасти турбины, тем самым и обеспечивается передача усилия.

Если бы конструкция включала только эти два колеса, то гидротрансформатор не отличался бы от гидромуфты, у которой вращающий момент на обеих составляющих практически одинаков.

Но в задачу гидротрансформатора входит не только передача усилия, а и его изменение.

Так, при старте необходимо обеспечить увеличение крутящего момента на ведомом колесе (при начале движения), а во время равномерного движения – исключить так называемое «проскальзывание».

Для выполнения этих функций в конструкции предусмотрены реактор и механизм блокировки.

Реактор представляет собой еще одно лопастное колесо, но значительно меньшего диаметра и располагается оно между турбиной и насосом, с последним реактор связан посредством обгонной муфты.

В задачу этого элемента входит увеличение скорости потока жидкости, что и приводит к повышению крутящего момента.

Работает реактор так: при возникновении большой разницы между основными колесами гидротрансформатора, обгонная муфта блокирует реактор, не давая ему вращаться (из-за этого еще одно название составляющей – статор).

При этом его лопасти, имеющие специальную форму, увеличивают скорость движения потока жидкости, попадающего на него после прохождения турбинного колеса, и направляют его снова на насос.

Таким образом реактор значительно повышает крутящий момент, необходимый для создания достаточного усилия при начале движения.

При равномерном движении гидротрансформатор блокируются, то есть в нем появляется жесткая связь, и делает это используемый в конструкции механизм блокировки.

Ранее в АКПП эта составляющая срабатывала только на повышенных скоростях движения. Сейчас же, используемые электронные системы управления коробкой блокируют гидротрансформатор практически на всех ступенях.

То есть, как только крутящий момент для определенной передачи подходит к требуемым параметрам, механизм срабатывает.

При смене ступени он отключается, чтобы обеспечить плавность переключения и снова включается. Тем самым исключается вероятность «проскальзывания» гидротрансформатора, что повышает его ресурс, снижает потери усилия и уменьшает потребление топлива.

Примечательно, что механизм блокировки, по сути, представляет собой фрикционное сцепление, и работает он по тому же принципу. То есть в конструкции имеется фрикционный диск, который закреплен на турбине.

В отключенном состоянии блокировочного механизма этот диск находится в отжатом состоянии. При включении же блокировки, фрикционы прижимаются к корпусу гидротрансформатора, тем самым и достигается жесткая передача крутящего момента от мотора на КПП.

В целом, если рассмотреть функционирование гидротрансформатора, то существует три режима его работы:

  • Трансформация (включается, когда требуется повышение крутящего момента для создания большего усилия. В этом режиме работает реактор, обеспечивая повышение скорости движения потока);
  • Гидромуфта (в этом режиме реактор не задействован и вращающий момент на ведущем и ведомом колесе практически одинаков);
  • Блокировка (турбина жестко связана с корпусом для уменьшения потерь на «проскальзывание»).

Используемая для управления работой гидротрансформатора электронная система обеспечивает очень быструю смену режима его работы, подстраивая функционирование этого элемента под возникающие условия.

Особенности гидротрансформаторов разных авто

Несмотря на то, что многие автопроизводители стараются внести свои какие-то конструктивные особенности в устройство элементов трансмиссии, гидротрансформатор у всех практически идентичен.

Разница если и есть, то она обычно сводится к каким-то мелким деталям, а также материалам изготовления составляющих частей.

К примеру, в автомобилях Субару, «слабым местом» гидротрансформатора является фрикционная накладка механизма блокировки. Особенно такая неисправность проявляется на авто, оснащенных АКПП последнего поколения.

На BMW, оснащавшихся коробками ZF, у многих автовладельцев отмечались проблемы с электронной системой управления, что приводило к появлению вибраций на определенных скоростях, ударов при переключении и т. д.

То есть, все проблемы с гидротрансформатором возникали из-за неправильного его управления.

Стоит отметить, что из-за этого и сама КПП работала проблемно, поэтому выявить причину очень сложно.

На автомобилях Мазда с автоматическими коробками самой частой проблемой гидротрансформатора является быстрый износ обгонной муфты реактора.

И так практически с каждой маркой авто – обязательно найдется какой-то конкретный составной элемент устройства, который выходит из строя чаще всего.

Неисправности узла

Хоть сам гидротрансформатор обладает не особо сложной конструкцией, с не таким уж и большим количеством составных частей, неисправностей, который могут возникнуть с ним – немало. Частично про них уже упоминалось выше.

Поскольку этот элемент является связующим звеном между силовым агрегатом и КПП, то в проблемы в его работе сразу же сказываются на функционировании трансмиссии.

Основными поломками гидротрансформатора являются:

  • Износ подшипников — опорных или промежуточного (между турбиной и насосом). Проявляется эта неисправность в виде появления негромкого шуршащего звука при работе трансмиссии без нагрузки. По мере увеличения скорости этот звук пропадает, но постепенно диапазон режимов работы АКПП, при которых звук присутствует, будет расширятся. Устраняется эта проблема разборкой, дефектовкой и заменой изношенных элементов;
  • Сильная засоренность масляного фильтра. Сопровождается эта проблема появлением вибрации – сначала на высоких скоростях, затем практически на всех режимах, причем сама вибрация будет увеличиваться. Устраняется неисправность заменой фильтрующего элемента и рабочей жидкости;
  • Износ или повреждение обгонной муфты. Из-за этого не работает реактор, поэтому увеличение крутящего момента не происходит. В результате у автомобиля падает динамика набора скорости. «Лечится» проблема заменой муфты;
  • Обрыв шлицевого соединения турбинного колеса с валом КПП. Итогом такой поломки является прекращение движения, поскольку на коробку вращение просто не передается. Устраняется неисправность восстановлением шлицевого соединения (в некоторых случаях – заменой гидротрансформатора);
  • Разрушение лопастей колес или реактора. Сопровождается неисправность появление громкого металлического скрежета и стука. Ремонт в этом случае состоит из замены поврежденных составляющих или всего узла в сборе;
  • «Масляное голодание». Недостаток масла приводит к перегреву, оплавлению пластиковых элементов. Последствия недостатка смазочного материала могут быть самыми серьезными, поэтому восстановить работоспособность трансмиссии вместе с гидротрансформатором восстановлением уровня АТФ не получится, обязательно нужна будет разборка узлов, оценка состояния элемента и замена поврежденных составляющих;
  • Перегрев. Происходит либо из-за «масляного голодания», либо по причине засоренности системы охлаждения КПП. Во втором случае требуется очистка радиатора, фильтров, замена рабочей жидкости;
  • Неисправность системы управления. Проявляется проблема путем самовольной остановки силовой установки при переключении ступеней АКПП. Устраняется неисправность диагностикой и заменой элементов электронной составляющей трансмиссии.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  Как заполнять Европротокол при ДТП

Стоит заметить, что указанный признаки тех или иных неисправностей можно считать косвенными, и по ним точно определить проблему с составляющими гидротрансформатора невозможно, тем более, что многие признаки присущи и поломкам автоматических коробок передач.

Читайте по теме: Неисправности АКПП, симптомы и способы устранения.

Поэтому точно сказать о причине неправильной работы трансмиссии можно только после снятия узлов – гидротрансформатора и КПП, с последующей диагностикой.

Напоследок отметим, что ремонт гидротрансформатора – операция сама по себе не сложная, поскольку конструкция узла – простая.

Проблема в проведении восстановительных работ заключается в другом – для его снятия необходимо разобрать практически всю трансмиссию, поскольку без демонтажа коробки до гидротрансформатора просто не добраться.

А для этого необходимо наличие специального оборудования, съемников, подъемников и прочего. Поэтому в гаражных условиях провести ремонт достаточно сложно.

Источник: https://AutoTopik.ru/obuchenie/1325-gidrotransformator.html

Устройство гидротрансформатора АКПП

Для чего служит гидротрансформатор на коробке автомат

Гидротрансформатор — это внешняя составляющая системы трансмиссии, которая передает крутящий момент от мотора на автоматическую коробку переключения передач (АКПП). Эта деталь имеет форму тора и состоит из двух соединенных турбин — ведомой и ведущей.

Управление гидротрансформатором АКПП осуществляется с помощью гидроблока, поэтому при возникновении ошибок проверяются и гидромеханическая, и электронная составляющие устройства.

Зачем нужен гидротрансформатор (бублик) в АКПП

Гидротрансформатор заменяет систему сцепления и позволяет избежать выключения двигателя при остановках. Система из двух турбин передает крутящий момент на коробку-автомат с преобразованием значения в 2-3,5 раза.

Устройство гидротрансформатора.

Во время перехода между передачами гидравлический преобразователь забирает часть крутящего момента, что делает переключение плавным и безопасным для трансмиссии. При быстром разгоне или резком торможении трансформатор служит дополнительным барьером, который предохраняет АКПП от перегрева и выхода из строя.

Как действует гидротрансформатор АКПП

Передача крутящего момента между валами двигателя и трансмиссии осуществляется за счет движения масла в насосе и ведомой турбине. Насос нагнетает давление в гидромеханическую систему и стимулирует вращение центростремительной турбины. На лопатки этой турбины подается рабочая жидкость.

Трансмиссионное масло является не только рабочей средой для трансформатора, но и охлаждающей жидкостью для деталей АКПП и смазкой для контактирующих поверхностей. Реактор устройства, который располагается между насосом и турбиной, регулирует увеличение крутящего момента и возвращение масла с турбины на насосное кольцо. При большой разнице моментов колес реактор блокируется с помощью муфты, которая соединена с насосом.

Часть энергии, которая вырабатывается двигателем, расходуется на движение и нагрев жидкости. Когда скорость вращения валов мотора и трансмиссии синхронизируется, необходимость в повышении момента исчезает, а потери мощности становятся весомым недостатком. Чтобы избежать этих потерь, гидротрансформатор блокируется.

Блокировка устройства позволяет напрямую передавать крутящий момент с коленчатого вала на трансмиссионный. Как только скорость их вращения рассинхронизируется, трансформатор снова включается в систему переключения.

Устройство гидротрансформатора коробки-автомат

Гидравлический трансформатор состоит из следующих деталей:

  • насос и насосное колесо — помпа сохраняет нужное давление в системе, а колесо насоса сопряжено с коленчатым валом;
  • турбина с лопатками — прочно соединяется с валом, передающим усилие мотора на АКПП;
  • реакторное колесо (реактор) — сопряжено с турбинным и насосным колесом;
  • блокировочная муфта — останавливает работу трансформатора для прямого сцепления коленвала и трансмиссии;
  • муфта свободного хода (обгонная) — вращает реактор в направлении, противоположном движению других колес.

Все детали трансформатора заключены в герметичную систему, а рабочая жидкость движется по замкнутому циклу. Если в корпусе устройства образуется течь, то рабочее давление падает, что сказывается на разгонных характеристиках автомобиля и состоянии фрикционных дисков АКПП.

Принцип работы гидротрансформатора

Составные части гидротрансформатора АКПП.

Принцип работы гидромеханического трансформатора основан на передаче энергии и крутящего момента через рециркуляцию рабочей жидкости (ATF) между лопастями насосного кольца и лопатками турбины. Компоненты связаны между собой опосредованно, через движение масла и обгонную муфту.

Кольцо насоса вращается в такт с коленчатым валом мотора, перемещая масло между своими лопастями. Жидкость одновременно перемещается вдоль поверхности лопастей и вращается относительно центральной оси устройства. После того как насосное кольцо выбрасывает масло, оно попадает на лопатки турбины. Давление на лопатки заставляет турбину вращаться.

Сложная конфигурация лопаток позволяет создать завихрения, которые ускоряют движение потока и увеличивают крутящий момент колеса.

После передачи крутящего момента на трансмиссионный вал поток направляется на статор (реактор), а затем возвращается на лопасти насоса.

Статор может регулировать скорость потока жидкости в замкнутой системе.

Если он не препятствует прохождению масла, то конструкция превращается из трансформатора в муфту. Гидромуфта является одним из основных режимов работы гидротрансформатора АКПП.

Работа системы гидравлического преобразователя контролируется электронным блоком управления (ЭБУ). Для этого внутри тора установлены датчики, измеряющие давление рабочей жидкости, скорость вращения лопаток и другие параметры.

Принцип работы трансформатора несложно понять на примере движения при подъеме. При езде в гору нагрузка на ведущие колеса автомобиля постепенно увеличивается, что приводит к снижению скорости машины и вращения турбины. При уменьшении скорости вращения падает сопротивление движению жидкости, что позволяет ускорить ее перемещение по турбине.

Рост скорости циркуляции автоматически приводит к увеличению крутящего момента турбинного колеса. Процесс продолжается до достижения равновесия между усилием сопротивления и скоростью потока.

Гидротрансформатор и коробка передач.

При блокировке трансформатора подача топлива в цилиндры приостанавливается, что позволяет сэкономить горючего. Движение автомобиля осуществляется «накатом», поэтому при выключенном преобразователе можно добиться торможения двигателем.

В зависимости от модели машины и алгоритмов, заложенных в ЭБУ, блокировочный механизм может запускаться как при высоких скоростях (не менее 60-70 км/ч), так и при низких (около 20 км/ч).

За счет опосредованного контакта деталей гидротрансформатор является эффективным амортизирующим устройством.

Если этот узел блокирован, а двигатель и АКПП находятся в жесткой сцепке, то коробка-автомат получает не только 100% передаваемой энергии, но и ударные нагрузки, которые негативно сказываются на ее состоянии.

Признаки неисправности гидротрансформаторов АКПП

Признаками неполадок в гидротрансформаторе являются:

  • вибрация, жужжание во время езды — часто свидетельствуют о повышении вязкости масла, снижении его охлаждающих и смазочных характеристик, засорении масляного фильтра;
  • механический шум в коробке передач, шуршание, которое становится слабее во время движения, — могут возникать вследствие износа подшипников трансформатора;
  • скрежет и стук в области тора или АКПП — являются признаком критической деформации, выпадения или разрушения лопастей насоса, лопаток турбины и реактора;
  • запах расплавленного пластика в салоне, который усиливается при наборе скорости, — свидетельствует о перегреве деталей трансформатора, засорении системы охлаждения или снижении уровня масла вследствие потери герметичности;
  • снижение способности к разгону — может быть обусловлено износом или повреждением муфты свободного хода;
  • резкие толчки при автоматическом и полуавтоматическом переключении передач — могут свидетельствовать как о загрязнении и низком уровне масла, так и о проблемах с гидроблоком;
  • пробуксовка — является признаком износа муфты, загрязнения рабочей жидкости или падения давления масла в системе;
  • остановка автомобиля — возникает при повреждении шлицев, которые соединяют турбинное кольцо и вал коробки-автомата;
  • активация аварийного режима — может быть связана с неисправностями муфт и контактирующих деталей, наличием металлической стружки в ATF, попаданием крупного обломка детали в турбину или неисправностями электроники;
  • выключение двигателя при смене передач — может свидетельствовать о неисправностях в ЭБУ или перегреве электронной системы управления.
ЭТО ИНТЕРЕСНО:  Почему дизель дымит при разгоне

При самостоятельной проверке трансмиссионной жидкости и техобслуживании машины могут обнаружиться и другие симптомы неполадок: снижение уровня масла в АКПП, помутнение ATF, загрязнение металлической пудрой и др. Эти поломки устраняются после диагностики трансформатора. Причиной снижения уровня масла часто становится наличие течи в корпусе устройства.

Наиболее уязвимыми зонами являются уплотнители и сальники. Появление металла в пробе ATF свидетельствует об износе торцевой шайбы, реже — других деталей гидромуфты.

Неисправность может быть вызвана комплексом факторов. Например, при износе фрикционной накладки устройства блокировки ее остатки забивают каналы системы, приводя к масляному голоданию трансформатора, перегреву его механической и электронной частей, вибрации и неравномерному износу сальников и втулок. Несвоевременная замена изношенных частей может привести к тому, что грязь и куски деталей повредят лопасти всех трех рабочих колец.

Замена или ремонт

Гидротрансформатор хорошо поддается ремонту. Все его детали, включая лопатки и кольца насоса, турбины и реактора, доступны на рынке запчастей.

Ремонт трансформатора проходит в несколько этапов:

  • срезание сварного шва и разборка устройства;
  • очищение частей гидротрансформатора от грязи и масла специальным раствором (сольвентом);
  • диагностика деталей (осмотр, дефектация различными методами);
  • снятие изношенных частей, высверливание или срезание их крепления;
  • прикрепление, приваривание или приклеивание новых запчастей;
  • проверка герметичности блокировочного поршня, замена сальников и уплотнителей;
  • сборка трансформатора, балансировка (выравнивание биения) на станке;
  • сварка корпуса;
  • проверка качества сварных швов, внутреннего зазора, функциональности блокировки;
  • повторная балансировка гидротрансформатора;
  • проверка исправности отремонтированного устройства.

При разрушении нескольких деталей, сильном износе трансформатора или сочетании этих факторов может быть рекомендована полная замена устройства. Стоимость замены может на порядок превышать среднюю цену ремонта. Восстановленные и бывшие в употреблении устройства могут стоить дешевле, но и ресурс их работы будет на 20-40% меньше, чем у новых.

Как продлить жизнь гидромуфте автоматической КПП

Чтобы продлить срок эксплуатации гидромеханического трансформатора, нужно соблюдать следующие рекомендации:

  • регулярно проверять цвет и прозрачность масла в АКПП и проводить замену ATF и фильтров не реже чем 1 раз на 40-60 тыс. км пробега;
  • заливать жидкость, рекомендованную производителем автомобиля;
  • менять уплотнители и сальники при каждом капитальном ремонте и переборе трансформатора, обязательно заменить все прокладки при пробеге более 150 тыс. км без ремонта;
  • избегать резкого набора и сброса скорости, при агрессивной езде чаще менять расходники и масло;
  • после запуска двигателя поочередно включить все передачи и режимы, удерживая тормоз и задержавшись на каждой по 2-3 секунды;
  • избегать буксировки и в положении ведомой машины (при выключенном моторе), и в положении ведущей;
  • при низких температурах прогревать машину не менее 10 минут на холостом ходу, в теплое время года — 2-3 минуты (трансмиссия и гидромуфта прогреваются отдельно, при включенном двигателе).

Срок службы АКПП с гидротрансформатором при своевременной замене масла и фильтров может составить более 300 тыс. км. При пробеге более 150 тыс. км в большинстве случаев требуется ремонт или замена основных деталей устройства — корпуса, муфт, турбины и др.

При неосторожной эксплуатации или наличии дефектов в конструкции капитальный ремонт может понадобиться существенно раньше.

Источник: https://topvariator.ru/akpp/gidrotransformator-akpp

Что такое гидротрансформатор?

Для чего служит гидротрансформатор на коробке автомат

Чем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали

Назначение гидротрансформатора

Большинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки. Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции.

Расположение гидротрансформатора

Гидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически.

Этот узел нужен для:

  1. Увеличения и передачи крутящего момента с двигателя на коробку.
  2. Защиты автомата при резком увеличении/снижении оборотов.
  3. Нормализации передачи вращения во время разгона (гашения двойного увеличения вращения).
  4. Прерывания связи между двигателем и трансмиссией при смене передачи (трансформатор забирает часть крутящего момента на себя).

Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы.

Устройство гидротрансформатора

Гидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором.

Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.

Гидротрансформатор состоит из:

  • корпуса;
  • реакторного колеса (статора) на муфте;
  • насосного (центробежного) колеса;
  • турбинного колеса;
  • механизма блокировки.

Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует.

Блокировка гидротрансформатора (ГДТ)

Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться.

В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка.

При такой блокировке существенно экономится расход топлива.

Устройство гидротрансформатора с муфтой блокировки

Также на современных авто, блокировка включается на любых передачах и даже для торможения двигателем. Делается это для эффективного и динамичного разгона и торможения автомобиля.

Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу.

Крутящий момент начинает передаваться без участия жидкости.

Неисправности гидротрансформатора, их причины

Гидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:

  1. Неисправности трансформатора (износ валов и соединений между ними, засорение или износ клапанов, подающих масло).
  2. Неисправности блочной плиты (сбои в работе масляного насоса, выход из строя датчиков, отвечающих за подачу масла, засорение каналов и фильтров системы подачи масла).

Признаков неисправности много:

  1. Автомобиль немного пробуксовывает в начале движения.
  2. Во время движение слышится жужжание, стуки.
  3. При смене передачи ощущаются толчки, мотор глохнет.
  4. Замедленный разгон, сопровождающийся шуршанием.
  5. Перегрев бублика.
  6. Появление запаха горения пластмассы.
  7. Вибрация трансформатора.
  8. Недостаточный уровень трансмиссионной жидкости.

Причины проявления симптомов:

  1. Механический шум во время холостого хода появляется при износе подшипников.
  2. При появлении вибраций необходимо проверить качество трансмиссионной жидкости и степень загрязненности фильтра (вибрация исчезает после очистки фильтра и замены жидкости).
  3. Характеристики разгона меняются из-за износа муфты, на которой закреплен статор (деталь нужно заменить).
  4. Скрежет, стук во время движения появляется при разрушении лопастей колес (бублик чаще всего меняется из-за нецелесообразности ремонта).
  5. Расплавленной пластмассой пахнет при засорении системы охлаждения коробки или уменьшении объема трансмиссионной жидкости.
  6. Автомобиль глохнет при смене передачи, если вышла из строя электроника, блокирующая трансформатор, требуется профессиональная диагностика.
  7. Авто самопроизвольно останавливается при выходе из строя электроники, срезании шлиц, засорении клапана блокировки, бублик необходимо поменять.
  8. Уровень трансмиссионной жидкости снижается, если нарушена герметичность корпуса, агрегат чаще всего меняется.

В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно.

Преимущества и недостатки гидротрансформатора

На автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы.

К преимуществам можно отнести:

  1. Плавное троганье с места, в том числе на сыпучем грунте и подъеме.
  2. Ход без рывков.
  3. Удобство управления в городе, в том числе в пробках.
  4. Снижение нагрузок и вибраций на трансмиссию при неравномерной работе двигателя.
  5. Избавление от прогорания сцепления.
  6. Отсутствие пробуксовываний.
  7. Гидротрансформатор предотвращает возникновение условий, способствующих изгибанию валов, поэтому на них можно ставить подшипники меньших размеров.
  8. ГДТ небольшие, поэтому узел с коробкой компактный.

Недостатки гидравлических трансформаторов:

  1. Низкий КПД из-за проскальзывания турбинного и насосного колес.
  2. Снижение динамики из-за затрат мощности на создание движения потока жидкости.
  3. Высокая стоимость узла.
  4. Дорогое обслуживание (жидкость стоит дорого, ее нужно много, причем охлажденной при помощи специальной системы, масло и фильтр необходимо часто менять).
  5. На грузовиках узлы коробок объемные из-за больших размеров колес.
  6. Дорогой ремонт и замена.

Заключение

Исходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании.

Источник: https://VazNeTaz.ru/gidrotransformator

Гидротрансформатор АКПП- Он же «Бублик»

Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат.

Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП.

Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.

Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Описание конструкции гидротрансформатора АКПП

Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.

Составные части гидротрансформатора:

  • Насосное и турбинное колеса.
  • Блокировочная муфта.
  • Насос.
  • Реакторное колесо.
  • Муфта свободного хода.

Все рабочие механизмы размещены в корпусе устройства гидротрансформатора:

  • насос напрямую работает от коленвала движка;
  • турбина сопряжена с шестеренками АКПП;
  • реакторное турбинное колесо – с турбиной и насосом;
  • в гидротрансформатор вставлены уникальные лопасти оригинальной конфигурации;
  • масло движется по внутреннему пространству коробки, благодаря гидротрансформатору;
  • назначение блокировочной муфты – блокировать гидротрансформатор в заданных режимах;
  • муфта свободного хода вращает реакторное колесо в противоположном направлении.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу.

    Здесь виновата управляющая автоматика.

  Компрессия в двигателе — Бензиновый и дизельный двигатели

Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется.

Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.

Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.

Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора.

Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе.

Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.

Ремонт ГТР

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

https://www.youtube.com/watch?v=Z3ck1MSxpeM

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

  Shift Lock на АКПП- Для чего нужна

Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.

Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.

Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.

Источник: https://motoran.ru/interesnoe/gidrotransformator-akpp

Гидротрансформатор в АКПП: что это такое, принцип работы и признаки неисправности

Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач – Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель.

Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор.

Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!

В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.

Основы гидротрансформатора

Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.

Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.

Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.

Типовые неисправности гидротрансформатора

Рассмотрев принцип работы гидротрансформатора, каждый мог понять, что данный механизм нагружен лишь при разгоне машины до некоторой скорости. В эти моменты гидромеханическое устройство потребляет получаемую энергию от мотора на раскручивание регулирующих лопастей, тем самым снижая КПД его работы до 80-85 %! Именно в этот момент своего функционирования, элементы гидротрансформатора испытывают колоссальные нагрузки и быстро изнашиваются.

Условно, поломки гидромеханического механизма можно разделить на две большие группы:

  • Износ и выход из строя составляющих самого гидротрансформатора;
  • Неисправности контактирующей с ним гидроблочной плиты.

Стоит отметить, что гидротрансформатор в отличие от гидроблока является неразборным узлом и, соответственно, неремонтируемым. Несмотря на это, в авторемонтной сфере принято просто срезать сварочный шов, соединяющий две половины механизма, ремонтировать его и проводить обратную сварку. Зачастую с гидротрансформатором случается одна из следующих неисправностей:

  • Износ фрикционов;
  • Расшатывание или износ входных и выходных валов;
  • Забивание или износ каналов подачи масла, что провоцирует перегрев устройства.

Реже встречаются проблемы с более мелкими составляющими устройства (накладками, сальниками, уплотнителями), которые особых сложностей в ремонт гидротрансформатора АКПП не вносят.

Помимо этого, в работе всей автоматической коробки передач, в частности и в функционировании гидротрансформатора, немаловажен гидроблок. Гидравлическая плита чаще всего имеет поломки по типу:

  • Забитости гидрофильтра или каналов подачи масла;
  • Неисправности соленоидов и датчиков, ответственных за подачу смазки в гидротрансформатор;
  • Некорректной работы масляного насоса.

Любые неисправности гидротрансформатора АКПП и гидроблока проявляются в виде трёх основных симптомов: перегрев данных узлов, вибрация и некорректная работа коробки. Появление таких признаков требует от автомобилиста принятия некоторых мер, так как в ремонте быстро убиваемого автомата важна скорость, и медлить при его организации нельзя.

:  Назначение тормозной ленты

Что такое гидротрансформатор и для чего он нужен

Устройство гидротрансформатора: 1 — маховик двигателя; 2 — корпус; 3 — первичный вал АКПП; 4 — насосное колесо; 5 — статор (реактор); 6 — турбинное колесо;

Гидротрансформатор представляет собой механизм через который осуществляется взаимодействие двигателя и трансмиссии. Благодаря их совместной работе осуществляется плавное переключение скорости, а также эффективная передача крутящего момента от двигателя к колесам.

Гидротрансформатор представляет собой камеру тороидальной формы, которая включает в себя три колеса с лопастями. Насосное колесо соеденено валом с двигателем автомобиля, турбинное колесо подключается к коробке переключения передач, а реактор закрепляется на корпусе гидротрансформатора.

Корпус гидротрансформатора заполнен специальной смазывающей жидкостью. Данная жидкость помогает охлаждать всю конструкцию, предохраняет от механических повреждений и является связующим звеном между лопастями разных колес. .

Гидротрансформатор

Гидротрансформатор

Заменяет стандартное для механической КПП сцепление, а располагается также между КПП и двигателем, крепится к его маховику. Его главной задачей является плавное изменение, передача на ведущий вал АКП крутящего момента.

В его конструкцию входят такие элементы как: насосное, турбинное, реакторное колёса, муфта свободного хода и блокировочная. Насосное колесо прикреплено к корпусу гидротрансформатора, оно вращается вместе с ним. Турбинное колесо сидит на ведущем вале планетарного редуктора.

На каждом из колёс есть лопасти определённой формы, при работе двигателя между ними начинает проходить рабочая жидкость, которой он заполнен.

Как только двигатель запускается, насосное колесо начинает вращаться и его лопасти подхватывают рабочую жидкость направляя на лопасти турбинного колеса, от которого она отлетает на реакторное колесо (реактор), расположенное между ними. Реактор направляет поток возвращающейся жидкости в сторону направления насосного колеса, его начинают вращать две силы за счёт чего увеличивается момент.

Когда обороты насосного и турбинного колёс сравниваются, происходит срабатывание муфты свободного хода и реактор начинает крутиться за счёт её, этот момент называется точкой сцепления. После этого гидротрансформатор начинает работать как гидромуфта, вращение от двигателя начинает передаваться к ведущему валу планетарного редуктора через рабочую жидкость.

Исключением является АКПП Honda, где взамен планетарного редуктора установлены валы с шестернями как на МКПП.

Но всё еще не передаётся 100%!энергии от двигателя из-за вязкого трения масла. Чтобы ликвидировать эти затраты и максимально эффективно его использовать, что в итоге приводит к уменьшению потребления топлива двигателем, присутствует блокировочная муфта, которая включается около 60 км/ч и больше. Находится эта муфта на ступице турбины.

Как только автомобиль набирает необходимую скорость, рабочая жидкость поступает к стенке блокировочной муфты с одной стороны, а с другой она подходит после открытия канала переключающим клапаном, тем самым создаётся зона низкого давления.

Из-за разности давления срабатывает блокировочный поршень, в этот момент он прижимается к корпусу гидротрансформатора, вследствие чего муфта начинает вращаться с корпусом гидротрансформатора.

Режим блокировки

Устройство гидротрансформатора с блокировкой

Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний.

Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД.

Блокировка может быть включена на любой передаче.

Источник: https://scart-avto.ru/remont/gidrotransformator-v-akpp-chto-eto-takoe-printsip-raboty-i/

Гдт (гидротрансформатор)

Гдт (гидротрансформатор) – устройство, которое преобразует и передает крутящий момент от ДВС на ведомые валы КПП. При этом изменение крутящего момента и частоты вращения происходит бесступенчато.

Как правило, конвертер крутящего момента (от англ. torque converter) в устройстве трансмиссии автомобилей используется на машинах с АКПП или вариаторной коробкой передач. 

Гидротнасформатор: устройство и принцип работы

ГДТ включает в себя следующие детали:

  • Насосное колесо;
  • Реактор (статор);
  • Турбинное колесо;
  • Блокировочный механизм;

Указанные детали находятся в едином прочном и герметичном корпусе, который обычно закрепляется на маховике ДВС. Также гидротрансформатор заполнен рабочей трансмиссионной жидкостью ATF, причем в процессе работы масло заметно нагревается и перемешивается внутри ГДТ.

К корпусу гидротрансформатора  жестко прикреплено насосное колесо, которое вращается от вала двигателя и создает внутри конвертера потоки трансмиссионной жидкости. Указанные потоки, в свою очередь, вращают реактор, а также турбинное колесо. При этом ГДТ отличается от обычной гидромуфты именно наличием реактора.

Реактор (он же статор) соединяется с насосным колесом при помощи обгонной муфты. Такое соединение позволяет добиться того, что если обороты насоса и турбины  сильно отличаются, тогда реактор блокируется в автоматическом режиме.

Блокировка статора позволяет передать на насосное колесо больше рабочей трансмиссионной жидкости. Наличие в устройстве ГДТ реактора позволяет увеличить крутящий момент в 3 раза во время разгона автомобиля с АКПП. Турбина соединена с валом коробки передач, соединение жесткое.  

Важно понимать, что передача крутящего момента внутри гидротрансформатора происходит без прямой связи отдельных составных элементов, то есть крутящий момент фактически передается через жидкость.

Это значит, что ударные нагрузки минимизированы, машина с гидротрансформатором плавно разгоняется со старта, отсутствуют рывки, далее во время езды переключения передач происходят мягко. 

Однако данное решение также имеет определенные недостатки. Внутри ГДТ часто возникает повышенный нагрев. Такое повышение температуры происходит по причине того, что турбинное колесо проскальзывает относительно насосного, так как в большинстве режимов работы момент вращения турбинного и насосного колеса не равен.

Результат  проскальзывания —  значительное тепловыделение, снижение КПД трансмиссии и увеличение расхода горючего. При этом в целях снижения расхода топлива применяется блокировка гидротрансформатора, которая реализуется при помощи механизма блокировки ГДТ.

Механизм блокировки ГДТ

Указанный механизм блокировки  обеспечивает возможность жесткой связи насоса и турбины. Если гидротрансформатор заблокирован, автоматическая коробка работает в таком режиме, когда двигатель и трансмиссия жестко связаны между собой, передача крутящего момента от ДВС на АКПП происходит без потерь.

Блокировка ГДТ в Коробке — автомат с электронным управлением работает так, что сигнал о включении блокировочного механизма поступает от ЭБУ коробкой передач, само включение блокировки происходит по заданному алгоритму, прописанному в программе.

На начальном этапе многие «автоматы» инициировали блокировку гидротрансформатора только тогда, когда автомобиль разгонялся до определенной скорости  (выше 60-70 км/ч). Более современные автоматические КПП блокируют гидротрансформатор на низких скоростях (от 20 км/ч).

В результате достигается экономия горючего не только в режиме езды по трассе, но и в  черте города, где скорость движения обычно низкая. Еще заблокированный гидротрансформатор позволяет добиться эффекта торможения двигателем на АКПП при  определенной скорости.

Если просто, ЭБУ двигателем прекращает подачу горючего в цилиндры в тот момент, когда сработала блокировка гидротрансформатора. В это время вал двигателя продолжает вращаться благодаря движению автомобиля «накатом», а не за счет получения энергии от сгорания топлива в цилиндрах.

Казалось бы, блокировка гидротрансформатора позволяет улучшить характеристики трансмиссии данного типа, добиться топливной экономичности, повысить КПД и т.д. С одной стороны, это так, однако жесткая связь ДВС и коробки путем блокировки ГДТ также означает, что на мотто и трансмиссию начинают передаваться ударные нагрузки.

В результате уменьшается ресурс коробки автомат, так как включение блокировочного механизма повышает нагрузки и быстрее изнашивает фрикционы АКПП. Также происходит быстрое загрязнение трансмиссионного масла, передачи с заблокированным гидротрансформатором включаются не так плавно.

Что в итоге

Как видно, гидротрансформатор фактически представляет собой отдельный агрегат, вынесенные за пределы корпуса самой АКПП. При этом нормальная работа гидромеханической коробки передач без гидротрансформатора (конвертера крутящего момента) невозможна. По этой причине АКПП и ГДТ в сборе принято называть «автоматической коробкой передач», то есть без разделения указанных агрегатов.

Напоследок отметим, что даже с учетом прочности корпуса, высокие нагрузки на гидротрансформатор (в том числе и температурные) могут вывести данный элемент из строя. В результате гидротрансформатор начинает течь, возникают сбои в работе внутренних компонентов устройства.

С учетом того, что стоимость гидротрансформаторов на разные модели АКПП достаточно высока, многие квалифицированные СТО по ремонту автоматических коробок передач выполняют ремонт гидротрансформаторов.  В процессе ремонта производится разборка ГДТ, замена изношенных элементов, после чего корпус заваривается в целях восстановления герметичности.

Источник: http://KrutiMotor.ru/gidrotransformator-akpp-ustrojstvo-printsip-raboty/

Гидротрансформатор АКПП | Признаки неисправности | Устройство

По мере развития технологии конструкция усложнялась и модернизировалась. В настоящее время трансформатор на автоматической коробкой передач выполняет функции сцепления. То есть во время приключений передач данный элемент размыкает связь коробки с двигателем. Сразу же после включения повышающей или понижающей передачи гидротрансформатор берет на себя часть крутящего момента, что позволяет обеспечить максимально плавное переключение ступеней.

Принцип работы | Общая информация | Устройство |

Конструкция гидротрансформатора для автоматической коробки передач состоит из трёх колец с лопастями. Все три кольца согласно вращаются и располагаются в одном корпусе. Внутри корпуса находится рабочая жидкость, которая позволяет смазывать и охлаждать подвижные элементы.

Насаживается гидротрансформатор на коленчатый вал, и далее соединяется непосредственно с коробкой передач. Рабочая жидкость нагнетается внутрь корпуса устройства при помощи специальной помпы.

Помпа позволяет обеспечить необходимое давление, а при проблемах с герметичностью конструкции появляются активные утечки рабочей жидкости, что в свою очередь приводит к повреждению механических вращающихся элементов.

Современные гидротрансформаторы, которые используются на автомобилях с АКПП, имеют полностью компьютерное управление, а многочисленные датчики следят за давлением и скоростью движения валов внутри ядра трансформатора.

Необходимо сказать, что подобное усложнение конструкции привело к снижению надёжности устройства и на устройство гидротрансформатора в целом.

В особенности на эксплуатационный срок и показатели надёжности сказывается эксплуатация в максимально жёстких режимах, что характерно для современных автомобилей.

Работа гидротрансформатора

Контроль работы гидротрансформатора и его оптимизация с работой коробки передач выполняется при помощи специального блока управления. Это полностью автоматическая система управления получает данные с многочисленных датчиков, установленных в коробке и самом гидротрансформаторе. При появлении каких-либо проблем в работе устройства автоматика выводит сообщение об ошибке.

В отдельных случаях может отмечаться полная блокировка работы гидротрансформатора, что приводит к отключению двигателя при изменении режимов работы коробки. Также  необходимо отметить, что большинство поломок трансформаторов происходит на механическом уровне. Поэтому при выполнении диагностики автомобиля точно определить характер и место поломки затруднительно.

Необходимо разбирать повреждённый элемент и визуально проводить его осмотр. Только так возможно определить имеющуюся поломку.

  • Справочник по неисправностям АКПП

Инженеры ведущих автопризводителей постоянно проводят изыскания, которые должны позволить повысить показатели надёжности техники и устранить проблемы в работе данного устройства.

Появление новых конструкторских разработок позволяет существенно модернизировать гидротрансформатор, который сегодня может с легкостью использоваться на автомобилях, оснащенных дизельными моторами. Для таких дизельных моторов характерен высокий показатель крутящего момента.

Если ранее трансмиссии с трудом справлялись с высокими показателями крутящего момента и достаточно быстро выходили из строя, то сегодня существенным образом повысилась надёжность автоматических коробок передач и гидротрансформаторов.

Гидротрансформатор АКПП устройство

Теоретически срок эксплуатации гидротрансформатора совпадает с эксплуатационным сроком автоматической коробки передач. Однако, как и любой другой механический элемент, он может выходить из строя и требовать ремонта. В отдельных случаях необходимо проводить полную замену гидротрансформатора, что приводит к существенным расходам автовладельца на ремонт гидротрансформатора.

Гидротрансформатор АКПП Признаки неисправности

Опишем основные симптомы поломок гидротрансформаторов, которые должны являться поводом для скорейшего обращения в специализированные ремонтные мастерские.

1 При переключении передач может быть слышен лёгкий механический звук. При увеличении оборотов и под нагрузкой механический звук исчезает. Подобное может свидетельствовать о проблемах с опорными подшипниками. Необходимо разбирать гидротрансформатор и оценивать состояние подшипников.

2 В скоростном диапазоне от 60 до 90 километров в час может отмечаться лёгкая вибрация. По мере ухудшения проблем с гидротрансформатором вибрация будет увеличиваться.

Подобное может быть вызвано тем, что продукты износа рабочей жидкости могут забивать масляный фильтр. В данном случае ремонт гидротрансформатора заключается в замене масляного фильтра и рабочей жидкости гидротрансформатора.

Как правило, требуется провести одновременно замену масла в самом моторе и коробке передач.

3 Наличием проблем с динамикой автомобиля свидетельствует о выходе из строя так называемой обгонной муфты. В данном случае необходимо разбирать гидротрансформатор и менять вышедшую из строя муфту.

4 Остановка автомобиля без возможности продолжения движения свидетельствует о повреждении шлица на турбинном колесе. Устранение неисправности заключается в установке новых шлицов или же замене всего турбинного колеса.

5 Появление характерного шуршащего шума при заведённом автомобиле свидетельствует о проблемах с подшипником, которые располагаются между турбинным или же реакторным колесом и крышкой гидротрансформатора. При движении такой шуршащий звук может полностью исчезать.

В данном случае вам необходимо как можно раньше обратиться в сервисный центр и провести ремонтные работы. В большинстве случаев необходимо будет провести замену повреждённых игольчатых упорных подшипников. Стоимость такого ремонта неисправности гидротрансформатора не слишком высока.

6 При переключении передач может быть слышен громкий металлический стук. Подобное свидетельствует о деформации и выпадении лопаток. Ремонт заключается в замене повреждённого колеса в гидротрансформаторе.

7 Необходимо регулярно проверять состояние масла в гидротрансформаторе и коробке передач. При появлении на масляном щупе коробки передач алюминиевой пудры необходимо выполнить проверку муфты свободного хода, которая изготовлена из алюминиевого сплава. В большинстве случаев появления такой пудры на щупе свидетельствует о проблеме в «бублике» и износе торцевой шайбы.

8 На работающем стоящем автомобиле в районе коробки передач может появляться характерный запах плавящейся пластмассы. Подобное происходит по причине перегрева гидротрансформатора и плавления полимерных элементов и деталей данного устройства. Перегрев гидротрансформатора может возникать по нескольким причинам. В первую очередь это проблемы со смазкой.

Так, например, при падении уровня масла отмечаются характерные признаки голодания коробки и гидротрансформатора. Также могут отмечаться проблемы с системой охлаждения акпп, которая не может качественно охлаждать масло в забитом теплообменнике. Ремонт в данном случае заключается в замене масла и проверке работоспособности системы охлаждения смазки.

9 При переключении передач или же при смене режимов работы коробки двигатель может глохнуть. Подобное свидетельствует о выходе из строя управляющей автоматики, которая блокирует работу гидротрансформатора. Ремонт заключается в замене вышедшего из строя блока управления.

Необходимо отметить тот факт, что каких-либо конкретных признаков неисправности гидротрансформатора нет. Поэтому в отдельных случаях специалисты сервисного центра не могут сразу определить признаки и характер поломки. Все это приводит к увеличению расходов на ремонт и неизменному простою автомобиля в сервисе.

Ремонт гидротрансформатора

Несмотря на кажущуюся сложность, ремонт гидротрансформатора не представляет особой сложности и может быть выполнен автовладельцем самостоятельно. Единственный нюанс состоит лишь в демонтаже гидротрансформатора с коробки передач.

В данном случае необходимо использовать специальный ремкомплект, который позволит провести демонтажные работы. При проведении ремонтных работ корпус устройства  разрезается, после чего проводится проверка состояния гидротрансформатора.

Именно поэтому при ремонтных работах необходимо заменять не только уплотняющие кольца, но и сам корпус устройства. При ремонтных работах проводится замена сальника и уплотнительных колец. Использовать старые, пускай даже хорошо сохранившиеся, кольца и сальники запрещается.

В отдельных случаях возможна сварка корпуса гидротрансформатора, что позволяет добиться полной герметичности устройства. После завершения работы вам необходимо установить отремонтированное устройство на коробку передач и провести балансировочные работы.

  • Ремонт гидротрансформатора АКПП — наши услуги

Необходимо отметить, что при определённых видах поломок гидротрансформатора его ремонт и замена вышедших из строя элементов нецелесообразна с экономической точки зрения. Куда проще приобрести новые устройства и установить его вместо повреждённого элемента.

Ремонт гидротрансформатора

Как вы можете видеть, ремонт гидротрансформатора относительно несложен. Однако без соответствующей подготовки и опыта работы по ремонту автомобиля провести его самостоятельно не представляется возможным. Поэтому если вы сомневаетесь в своих силах, лучше всего обратиться к профессиональным специалистам. Стоимость нового гидротрансформатора может составить порядка тысячи долларов в зависимости от марки автомобиля.

Источник: https://akpphelp.ru/gidrotransformator_akpppriznaki.html

Что такое гидротрансформатор в АКПП

Конструкция современной АКПП имеет сложную, многоступенчатую структуру призванную обеспечить водителю комфорт и удобство за рулем. Одним из ее компонентов является гидротрансформатор. Устройство, разработанное еще в конце прошлого века, до сих пор играет важную роль в работе автоматической коробки передач. Сегодня мы расскажем для чего нужен гидротрансформатор, как он работает, и когда есть причины усомниться в его исправности.

Как работает гидротрансформатор в АКПП

Движение жидкости в гидротрансформаторе АКПП.

Принцип работы трансформатора основан на передаче энергии путем рециркуляции жидкости в замкнутом пространстве, механически его компоненты между собой не соприкасаются. Благодаря непосредственной связи одного из винтов с коленчатым валом двигателя, а второго — с первичным валом трансмиссии вместе они обеспечивают плавное переключение передач при наборе скорости. При этом он также не дает двигателю заглохнуть в момент нажатия на педаль тормоза и принудительной остановке первичного вала.

Насосное колесо гидротрансформатора вращается вместе с коленвалом двигателя и перемещает жидкость, которая расположена между его лопастями. В результате жидкость вращается относительно оси гидротрансформатора и перемещается вдоль лопастей насосного колеса.

После выхода из насосного колеса жидкость попадает на лопасти турбинны и передает ей энергию. После этого поток жидкости попадает на статор и возвращается на насосное колесо.

В результате, жидкость внутри гидротрансформатора постоянно перемещается по замкнутому кругу перемещая энергию от насоса к турбине и от двигателя к коробке переключения передач.

Для управления этим процессорм используется электроника, десятки датчиков установленных в автомобиле делают это с безупречной точностью. Автоматика неустанно следит за уровнем давления жидкости и скоростью вращения лопастей в механизме.

: Что такое овердрайв на коробке автомат.

Признаки неисправности гидротрансформатора АКПП

Даже самые надежные трансмиссии подвержены износу и неисправностям, в том числе причина поломки может крыться и в работе гидротрансформатора. Определить, что именно он является источником проблем можно по следующим характерным признакам:

  • Появление легкой вибрации при наборе скорости, особенно это заметно при переключении на третью и четвертую передачи. Причиной может быть загрязнение смазывающей жидкости и, как следствие, загрязнение фильтра. Если долгое не обращать внимание, то со временем вибрационные шумы будут усиливаться, а компоненты гидротрансформатора выходить из строя. Помочь в данном случае может замена фильтра, а также всех смазывающей жидкостей.
  • При переключении скоростей в коробке отчетливо слышны посторонние звуки. Как правило, их причиной являются опорные подшипники, которые со временем изнашиваются и требуют замены. Также источником шума иногда становятся игольчатые подшипники, но их износ характеризуется появлением шуршания, которое при разгоне автомобиля постепенно исчезает.

Как выглядит гидротрансформатор АКПП.

  • Автомобиль не может начать движения. Это происходит лишь в крайне запущенных ситуациях, когда были повреждены лопасти турбинного колеса. В основном это происходит при механической деформации корпуса трансформатора и требует непосредственной разборки устройства и замены поврежденных деталей.
  • Запах горелой пластмассы. Пахнуть может как сама АКПП, так и гидротрансформатор, в котором недостаточно смазывающей жидкости. Это может произойти вследствие разгерметизации корпуса и недостаточном уровне охлаждение крутящихся винтов.
  • При движении или торможении автомобиля глохнет двигатель. Это явное свидетельство некорректной работы электроники, которая во время не подает гидротрансформатору команды активации.

Несмотря на достаточно простую конструкцию гидротрансформатор выполняет ряд важных функций в составе АКПП автомобиля. Поэтому важно следить за его техническим состоянием и проводить диагностику при появлении первых признаков неисправности.

Самостоятельно диагностировать и устранить проблемы с гидротрансформатором достаточно сложно. Это связано с тем, что симптомы неисправности не всегда точно свидетельствуют о ее источнике и причины шумов из-под капота или подергивании машины на трассе могут быть в совсем другом узле автомобиля.

Чтобы надежно проверить гидротрансформатор на неисправность его необходимо разобрать, при этом слив смазочную жидкость. После чего можно будет оценить состояние лопастных колец, степень их износа и в случае необходимости произвести соответствующий ремонт или замену.

Процедура разборки гидротрансформатора достаточно длительна и требует как наличия специального оборудования, так и навыков работы с ним. Кроме того, чтобы добраться до этого узла автомобиля придется сперва выполнить демонтаж коробки передач.

Поэтому при возникновении проблес этим узлом лучше сразу обратиться на СТО.

: Что такое кикдаун в машине с АКПП.

на тему

Источник: https://AvtoNov.com/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%B3%D0%B8%D0%B4%D1%80%D0%BE%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%BE%D1%80-%D0%B2-%D0%B0%D0%BA%D0%BF%D0%BF/

Устройство и принцип работы современного гидротрансформатора

Первый гидротрансформатор появился большее ста лет назад. Претерпев множество модификаций и доработок, этот эффективный способ плавной передачи крутящего момента сегодня применяется во многих сферах машиностроения, и автомобильная промышленность не стала исключением. Управлять автомобилем стало намного легче и комфортнее, так как теперь нет необходимости пользоваться педалью сцепления. Устройство и принцип работы гидротрансформатора, как и все гениальное, очень просты.

История появления

Первый в мире серийный легковой автомобиль без педали сцепления

Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году.

Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде.

При жесткой связи вода тормозила резкий ход лопастей при запуске, создавая чрезмерную обратную нагрузку на двигатель, валы и их соединения.

Впоследствии модернизированные гидромуфты стали использоваться на лондонских автобусах и первых дизельных локомотивах в целях обеспечить их плавное трогание с места. А еще позже гидромуфты облегчили жизнь и водителям автомобилей. Первый серийный автомобиль с гидротрансформатором, Oldsmobile Custom 8 Cruiser, сошел с конвейера завода General Motors в 1939 году.

Устройство и принцип работы

Устройство гидротрансформатора

Гидротрансформатор представляет собой закрытую камеру тороидальной формы, внутри которой вплотную друг к другу соосно размещены насосное, реакторное и турбинное лопастные колеса.

Внутренний объем гидротрансформатора заполнен циркулирующей по кругу, от одного колеса к другому, жидкостью для автоматических трансмиссий. Насосное колесо выполнено в корпусе гидротрансформатора и жестко соединено с коленчатым валом, т.е. вращается с оборотами двигателя.

 Турбинное колесо жестко связано с первичным валом автоматической коробки передач.

Между ними находится реакторное колесо, или статор. Реактор установлен на муфте свободного хода, которая позволяет ему вращаться только в одном направлении.

Лопасти реактора имеют особую геометрию, благодаря которой поток жидкости, возвращаемый с турбинного колеса на насосное, изменяет свое направление, тем самым увеличивая крутящий момент на насосном колесе.

Этим различаются гидротрансформатор и гидромуфта. В последней реактор отсутствует, и соответственно крутящий момент не увеличивается.

Гидротрансформатор — принцип работы

Принцип работы гидротрансформатора основан на передаче крутящего момента от двигателя к трансмиссии посредством рециркулирующего потока жидкости, без жесткой связи.

Ведущее насосное колесо, соединенное с вращающимся коленчатым валом двигателя, создает поток жидкости, который попадает на лопасти расположенного напротив турбинного колеса. Под воздействием жидкости оно приходит в движение и передает крутящий момент на первичный вал трансмиссии.

С повышением оборотов двигателя увеличивается скорость вращения насосного колеса, что приводит к нарастанию силы потока жидкости, увлекающей за собой турбинное колесо. Кроме того, жидкость, возвращаясь через лопасти реактора, получает дополнительное ускорение.

Поток жидкости трансформируется в зависимости от скорости вращения насосного колеса. В момент выравнивания скоростей турбинного и насосного колес реактор препятствует свободной циркуляции жидкости и начинает вращаться благодаря установленной муфте свободного хода.

Все три колеса вращаются вместе, и система начинает работать в режиме гидромуфты, не увеличивая крутящий момент.

При увеличении нагрузки на выходном валу скорость турбинного колеса замедляется относительно насосного, реактор блокируется и снова начинает трансформировать поток жидкости.

Преимущества

  1. Плавность движения и троганья с места.
  2. Снижение вибраций и нагрузок на трансмиссию от неравномерности работы двигателя.
  3. Возможность увеличения крутящего момента двигателя.
  4. Отсутствие необходимости обслуживания (замены элементов и т.д.).

Недостатки

  1. Низкий КПД (по причине отсутствия гидравлических потерь и жесткой связи с двигателем).
  2. Плохая динамика автомобиля, связанная с затратами мощности и времени на раскручивание потока жидкости.
  3. Высокая стоимость.

Режим проскальзывания

Блокировка гидротрансформатора может также быть неполной и работать в так называемом «режиме проскальзывания». Блокировочная плита не полностью прижимается к рабочей поверхности, тем самым обеспечивается частичное проскальзывание фрикционной накладки.

Крутящий момент предается одновременно через блокировочную плиту и циркулирующую жидкость. Благодаря применению данного режима у автомобиля значительно повышаются динамические качества, но при этом сохраняется плавность движения.

Электроника обеспечивает включение муфты блокировки как можно раньше при разгоне, а выключение – максимально позже при понижении скорости.

Однако режим регулируемого проскальзывания имеет существенный недостаток, связанный с истиранием поверхностей фрикционов, которые к тому же подвергаются сильнейшим температурным воздействиям. Продукты износа попадают в масло, ухудшая его рабочие свойства. Режим проскальзывания позволяет сделать гидротрансформатор максимально эффективным, но при этом существенно сокращает срок его службы.

(10 4,50 из 5)

Источник: https://TechAutoPort.ru/transmissiya/korobka-peredach/gidrotransformator.html

Понравилась статья? Поделиться с друзьями:
СТО
На каком бензине лучше ездить на ларгусе

Закрыть