Как найти площадь осевого сечения в цилиндре

Осевое сечение цилиндра прямого и наклонного. Формулы для площади сечения и его диагоналей

Как найти площадь осевого сечения в цилиндре

Цилиндр — это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Прямой и наклонный цилиндры

Перед тем как переходить к рассмотрению осевого сечения цилиндров, расскажем, какие типы этих фигур бывают.

Если образующая линия перпендикулярна основаниям фигуры, тогда говорят о прямом цилиндре. В противном случае цилиндр будет наклонным. Если соединить центральные точки двух оснований, то полученная прямая называется осью фигуры. Приведенный рисунок демонстрирует разницу между прямым и наклонным цилиндрами.

Видно, что для прямой фигуры длина образующего отрезка совпадает со значением высоты h. Для наклонного цилиндра высота, то есть расстояние между основаниями, всегда меньше длины образующей линии.

Далее охарактеризуем осевые сечения обоих типов цилиндров. При этом будем рассматривать фигуры, основаниями которых является круг.

Осевое сечение прямого цилиндра

Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.

В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.

Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.

Запишем формулы для площади осевого сечения цилиндра и длины hd его диагонали:

Источник: https://FB.ru/article/443879/osevoe-sechenie-tsilindra-pryamogo-i-naklonnogo-formulyi-dlya-ploschadi-secheniya-i-ego-diagonaley

Примеры того, как вычислить площадь цилиндра :

Как найти площадь осевого сечения в цилиндре

Существует большое количество задач, связанных с цилиндром. В них нужно находить радиус и высоту тела или вид его сечения. Плюс ко всему, иногда требуется вычислить площадь цилиндра и его объем.

Какое тело является цилиндром?

В курсе школьной программы изучается круговой, то есть являющийся таковым в основании, цилиндр. Но выделяют еще и эллиптический вид данной фигуры. Из названия ясно, что его основанием будет эллипс или овал.

Оснований у цилиндра два. Они равны друг другу и соединены отрезками, которые совмещают соответствующие точки оснований. Они называются образующими цилиндра. Все образующие параллельны друг другу и равны. Именно они составляют боковую поверхность тела.

В общем случае цилиндр — это наклонное тело. Если образующие составляют прямой угол с основаниями, то говорят уже о прямой фигуре.

Интересно, что круговой цилиндр является телом вращения. Он получается от поворота прямоугольника вокруг одной из его сторон.

Основные элементы цилиндра

Основные элементы цилиндра выглядят следующим образом.

  1. Высота. Она является кратчайшим расстоянием между основаниями цилиндра. Если он прямой, то высота совпадает с образующей.
  2. Радиус. Совпадает с тем, который можно провести в основании.
  3. Ось. Это прямая линия, которая содержит центры обоих оснований. Ось всегда параллельна всем образующим. В прямом цилиндре она перпендикулярна основаниям.
  4. Осевое сечение. Оно образуется при пересечении цилиндра плоскостью, содержащей ось.
  5. Касательная плоскость. Она проходит через одну из образующих и перпендикулярна осевому сечению, которое проведено через эту образующую.

Как связан цилиндр с вписанной в него или описанной около него призмой?

Иногда встречаются задачи, в которых нужно вычислить площадь цилиндра, а известны при этом некоторые элементы связанной с ним призмы. Как соотносятся эти фигуры?

Если призма вписана в цилиндр, то ее основания – равные многоугольники. Причем они вписаны в соответствующие основания цилиндра. Боковые ребра призмы совпадают с образующими.

У описанной призмы в основаниях находятся правильные многоугольники. Они описаны около кругов цилиндра, являющихся его основаниями. Плоскости, которые содержат грани призмы, касаются цилиндра по образующим.

О площади боковой поверхности и основания для прямого кругового цилиндра

Если сделать развертку боковой поверхности, то получится прямоугольник. Его стороны будут совпадать с образующей и длиной окружности основания. Поэтому боковая площадь цилиндра будет равна произведению этих двух величин. Если записать формулу, то получится следующее:

ЭТО ИНТЕРЕСНО:  Какой двигатель стоит на ваз 2104

Sбок= l * н,

где н — образующая, l — длина окружности.

Причем последний параметр вычисляется по формуле:

l = 2π * r,

здесь r — радиус окружности, π — число «пи», равное 3,14.

Поскольку основание — круг, то его площадь вычисляется с помощью такого выражения:

Sосн = π * r2.

О площади всей поверхности прямого кругового цилиндра

Так как она образована двумя основаниями и боковой поверхностью, то нужно сложить эти три величины. То есть полная площадь цилиндра будет вычисляться по формуле:

Sпол = 2π * r * н + 2π * r2.

Часто ее записывают в другом виде:

Sпол= 2π * r (н + r).

О площадях наклонного кругового цилиндра

Что касается оснований, то там все формулы те же, ведь они по-прежнему круги. А вот боковая поверхность уже не дает прямоугольника.

Для расчета площади боковой поверхности наклонного цилиндра потребуется перемножить значения образующей и периметра сечения, которое будет перпендикулярно выбранной образующей.

Формула выглядит так:

Sбок= х * Р,

где х — длина образующей цилиндра, Р — периметр сечения.

Сечение, кстати, лучше выбирать такое, чтобы оно образовывало эллипс. Тогда будут упрощены расчеты его периметра. Длина эллипса вычисляется по формуле, которая дает приблизительный ответ. Но его часто бывает достаточно для задач школьного курса:

l = π * (а + в),

где «а» и «в» — полуоси эллипса, то есть расстояния от центра до ближайшей и самой дальней его точек.

Площадь всей поверхности нужно вычислять с помощью такого выражения:

Sпол = 2π * r2 + х * Р.

Чему равны некоторые сечения прямого кругового цилиндра?

Когда сечение проходит через ось, то его площадь определяется как произведение образующей и диаметра основания. Это объясняется тем, что оно имеет вид прямоугольника, стороны которого совпадают с обозначенными элементами.

Чтобы найти площадь сечения цилиндра, являющегося параллельным осевому, потребуется тоже формула для прямоугольника. В этой ситуации одна его сторона будет по-прежнему совпадать с высотой, а другая равна хорде основания. Последняя же совпадает с линией сечения по основанию.

Когда сечение перпендикулярно оси, то оно имеет вид круга. Причем его площадь такая же, как у основания фигуры.

Возможно еще пересечение под некоторым углом к оси. Тогда в сечении получается овал или его часть.

Примеры задач

Задание №1. Дан прямой цилиндр, площадь основания которого 12,56 см2. Необходимо вычислить полную площадь цилиндра, если его высота равна 3 см.

Решение. Необходимо воспользоваться формулой для полной площади кругового прямого цилиндра. Но в ней не хватает данных, а именно радиуса основания. Зато известна площадь круга. Из нее легко вычислить радиус.

Он оказывается равным квадратному корню из частного, которое получается от деления площади основания на пи. После деления 12,56 на 3,14 выходит 4. Квадратный корень из 4 — это 2. Поэтому радиус будет иметь именно такое значение.

Теперь можно подсчитать площадь боковой поверхности. Для этого следует умножить пи на радиус, высоту и 2. Произведение будет выглядеть так: 3,14 * 3 * 2 * 2. Итогом действий является: 37,68 см2.

Для того чтобы сосчитать полную площадь нужно сложить два основания (12,56 см2) и боковую поверхность (37,68 см2). В результате получается число 50,24 см2.

Ответ: Sпол = 50,24 см2.

Задание №2. Цилиндр с радиусом 5 см пресечен плоскостью, параллельной оси. Расстояние от сечения до оси равно 3 см. Высота цилиндра — 4 см. Требуется найти площадь сечения.

Решение. Форма сечения — прямоугольная. Одна его сторона совпадает с высотой цилиндра, а другая равна хорде. Если первая величина известна, то вторую нужно найти.

Для этого следует сделать дополнительное построение. В основании проводим два отрезка. Оба они будут начинаться в центре окружности. Первая будет заканчиваться в центре хорды и равняться известному расстоянию до оси. Вторая — на конце хорды.

Получится прямоугольный треугольник. В нем известны гипотенуза и один из катетов. Гипотенуза совпадает с радиусом. Второй катет равен половине хорды. Неизвестный катет, умноженный на 2, даст искомую длину хорды. Вычислим его значение.

Для того чтобы найти неизвестный катет, потребуется возвести в квадрат гипотенузу и известный катет, вычесть из первого второе и извлечь квадратный корень. Квадраты равны 25 и 9. Их разность – 16. После извлечения квадратного корня остается 4. Это искомый катет.

Хорда будет равна 4 * 2 = 8 (см). Теперь можно вычислить площадь сечения: 8 * 4 = 32 (см2).

Ответ: Sсеч равна 32 см2.

Задание №3. Необходимо вычислить площадь осевого сечения цилиндра. Известно, что в него вписан куб с ребром 10 см.

Решение. Осевое сечение цилиндра совпадает с прямоугольником, который проходит через четыре вершины куба и содержит диагонали его оснований. Сторона куба является образующей цилиндра, а диагональ основания совпадает с диаметром. Произведение этих двух величин даст площадь, которую нужно узнать в задаче.

ЭТО ИНТЕРЕСНО:  Что такое овердрайв на автоматической коробке передач

Для поиска диаметра потребуется воспользоваться знанием того, что в основании куба – квадрат, а его диагональ образует равносторонний прямоугольный треугольник. Гипотенуза его является искомой диагональю фигуры.

Для ее расчета потребуется формула теоремы Пифагора. Нужно возвести в квадрат сторону куба, умножить ее на 2 и извлечь квадратный корень. Десять во второй степени — это сто. Умноженное на 2 — двести. Квадратный корень из 200 равен 10√2.

Сечение – это снова прямоугольник со сторонами 10 и 10√2. Его площадь легко сосчитать, перемножив эти значения.

Ответ. Sсеч = 100√2 см2.

Источник: https://www.syl.ru/article/199219/mod_primeryi-togo-kak-vyichislit-ploschad-tsilindra

Цилиндры

Как найти площадь осевого сечения в цилиндре

Справочник по математике Геометрия (Стереометрия) Цилиндры

      Рассмотрим две паралллельные плоскости паралллельные плоскости   α   и   β   и произвольную окружность радиуса   r   с центром в точке   O ,   лежащую в плоскости   α   (рис. 1).

Рис.1

      Если из каждой точки окружности опустить перпендикуляр на плоскость   β,   то основания этих перпендикуляров образуют на плоскости   β   окружность радиуса   r,   центр   O1   которой является основанием перпендикуляра, опущенного из точки   O   на плоскость   β   (рис.2).

Рис.2

      Определение 1.

Отрезок перпендикуляра, опущенного из любой точки окружности с центром   O   на плоскость  β ,   который заключен между плоскостями   α   и   β ,   называют образующей цилиндра.
Совокупность всех образующих цилиндра называют цилиндрической поверхностью.
Фигуру, ограниченную цилиндрической поверхностью и плоскостями   α   и   β,   называют цилиндром.
Отрезок   OO1   называют осью цилиндра .
Радиус окружности Радиус окружности на плоскости   α   с центром в точке   O   называют радиусом цилиндра.
Расстояние между плоскостямиРасстояние между плоскостями   α   и   β ,   называют высотой цилиндра.
Круги с центрами   O   и   O1   на плоскостях   α   и   β ,   называют основаниями цилиндра.

      Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра. Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра.

      Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

     Замечание 3. Прямая   OO1   является осью симметрии цилиндра, а середина отрезка   OO1   является центром симметрии цилиндра.

Сечения цилиндра

      Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
      Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Рис.3

      На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник   AA1B1B .

     Замечание 4. Каждое осевое сечение цилиндра с радиусом  r и высотой   h   является прямоугольником со сторонами   2r   и   h .

      Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Рис.4

      Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса   r .

      Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

      Для цилиндра с радиусом   r   и высотой   h   (рис. 5)

Рис.5

введем следующие обозначения

      Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

Источник: https://www.resolventa.ru/uslugi/uslugischoollosi.htm

Нахождение радиуса цилиндра: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = πR2h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2πR), являющейся основанием фигуры, на его высоту:

S = 2πRh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2πRh + 2πR2 или S = 2πR(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2πR2 + 2πRh – S = 0

Можно заметить, что это квадратное уравнение вида ax2 + bx + c = 0, где:

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

ЭТО ИНТЕРЕСНО:  Что значит коробка автомат

08. Цилиндр

Елена Репина 2013-09-10 2019-08-06

смотрите также 1 (куб, параллелепипед), 2 (призма, призма II), 3 (пирамида, пирамида II), 4 (составные многогранники, составные многогранники II), 5 (цилиндр+конус), 7 (конус), 8 (шар).

Продолжаем разбор Задач №8 из открытого банка заданий ЕГЭ по математике.

Сегодня работаем с цилиндром. 

Задача 1. 

Радиус основания цилиндра равен 7, высота равна 10. Найдите площадь боковой поверхности цилиндра, деленную на .

Решение: + показать

Площадь боковой поверхности цилиндра вычисляется по формуле где – высота цилиндра, – радиус.

Тогда

Следовательно,

Ответ: 140.  

Задача 2

Одна цилиндрическая кружка вдвое выше второй, зато вторая в полтора раза шире. Найдите отношение объема второй кружки к объему первой.

Решение:  + показать

Пусть  – радиус основания первой кружки,  – высота первой кружки.

Тогда – радиус второй кружки, – высота второй кружки.

Объемы цилиндров вычисляются так:

Наконец,

Ответ: 1,125.  

Задача 3

В цилиндрический сосуд налили см  воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см. Чему равен объем детали? Ответ выразите в см.

Решение:  + показать

 Объем вытесненной  жидкости равен объему погруженной детали в жидкость.

Первоначально жидкость занимала  объем .

И так как объем жидкости  по условию равен см, то

Тогда объем вытесненной жидкости (а значит и детали) есть см.

Ответ: 1000.  

Задача 4

В цилиндрическом сосуде уровень жидкости достигает 27 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 3 раза больше первого? Ответ выразите в сантиметрах.

Решение:  + показать

Пусть радиус первого цилиндрического сосуда есть , тогда радиус второго цилиндрического сосуда равен .

В первом сосуде жидкость занимала объем см.

Во втором сосуде  жидкость занимает тот же объем, при этом , где – уровень жидкости.

Тогда

Ответ: 3.  

Задача 5

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 1. Объем параллелепипеда равен 5. Найдите высоту цилиндра.

Решение:  + показать

Раз прямоугольный параллелепипед описан около цилиндра, то в основании прямоугольного параллелепипеда – квадрат.

Радиус основания цилиндра  равен 1, значит сторона квадрата основания параллелепипеда  равна 2.

Объем параллелепипеда есть Так как он по условию равен 5, то откуда  

У цилиндра и прямоугольного параллелепипеда высоты совпадают, значит и высота цилиндра равна 1,25.

Ответ: 1,25.  

В основании прямой призмы лежит прямоугольный треугольник с катетами 1 и 10. Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.

Так как высота призмы по условию равна  равна , то и высота цилиндра тоже равна .

Источник: https://egemaximum.ru/zadachi-12-cilindr/

Объём стенки цилиндра

Чтобы посчитать объём стенки цилиндра, то есть объём полого цилиндра, воспользуйтесь нашим очень удобным онлайн калькулятором:

Найти чему равен объём полого цилиндра (Vст) можно зная (либо-либо):

  • Высоту цилиндра h, внешний радиус r1 и внутренний радиус r2
  • Высоту цилиндра h, внешний диаметр d1 и внутренний диаметр d2
  • Высоту цилиндра h, внешний радиус r1 и толщину стенки δ
  • Высоту цилиндра h, внутренний радиус r2 и толщину стенки δ
  • Высоту цилиндра h, внешний диаметр d1 и толщину стенки δ
  • Высоту цилиндра h, внутренний диаметр d2 и толщину стенки δ

Чему равен объём полого цилиндраVст если:

Через радиусы или диаметры цилиндра

Vст = π ⋅ (r1² — r2²) ⋅ h , где r1 — внешний радиус, r2 — внутренний радиус , а h — высота

Vст = π ⋅ ((d1/2)² — (d2/2)²) ⋅ h , где d1 — внешний диаметр, d2 — внутренний диаметр, а h — высота

Через толщину стенки цилиндра

Vст = π ⋅ (d2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d2 — внутренний диаметр, а h — высота

Vст = π ⋅ ((d1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, d1 — внешний диаметр, а h — высота

Vст = π ⋅ (2 ⋅ r2 ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r2 — внутренний радиус, а h — высота

Vст = π ⋅ ((2 ⋅ r1 — 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ — толщина стенки цилиндра, r1 — внешний радиус, а h — высота

Пример №1

К примеру, посчитаем каков объём металла в трубе, если её длинна 3 метра, внешний диаметр d1=5 см, а внутренний d2=4.5 см?

Vст = 3.14 ⋅ ((5/2)² — (4.5/2)²) ⋅ 300 = 3.14 ⋅ (6.25 — 5.0625) ⋅ 300 ≈ 1119 см³

Пример №2

Теперь посчитаем объём металла в этой же 3-х метровой трубе, но возьмём внутренний радиус r2 = 2.25 см и толщину стенки δ = 0.25 см (при этом у нас должен получится тот же ответ, что и в предыдущем примере):

Vст = 3.14 ⋅ (2 ⋅ 2.25 ⋅ 0.25 + 0.25²) ⋅ 300 = 3.14 ⋅ 1.1875 ⋅ 300 ≈ 1119 см³

Перевод объёма в массу

Объём цилиндра

Конвертер единиц объёма

Источник: https://poschitat.online/obem-stenki-cilindra

Понравилась статья? Поделиться с друзьями:
СТО
Какой производитель шин лучше

Закрыть